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Abstract— Motor synergies are an important concept in
human motor control. Through the co-activation of multiple
muscles, complex motion involving many degrees-of-freedom
can be generated. However, leveraging this concept in robotics
typically entails using human data that may be incompatible for
the kinematics of the robot. In this paper, our goal is to enable
a robot to identify synergies for low-dimensional control using
trial-and-error only. We discuss how synergies can be learned
through latent space policy search and introduce an extension
of the algorithm for the re-use of previously learned synergies
for exploration. The application of the algorithm on a bimanual
manipulation task for the Baxter robot shows that performance
can be increased by reusing learned synergies intra-task when
learning to lift objects. But the reuse of synergies between
two tasks with different objects did not lead to a significant
improvement.

I. INTRODUCTION
The ability to manipulate objects in the environment is

an important skill for humans and robots and has attracted
a large body of research. Motor skills for reaching and
grasping, for example, allow robots to physically interact
with their immediate surroundings. Yet, generating control
policies for these tasks is highly challenging due to the
high number of involved degrees-of-freedom (DOF) and the
inherent uncertainty.

An important concept in motor control that has helped
to overcome these challenges, is the concept of motor
synergies [1]; joint co-activations of a set of muscles from
a smaller number of neural commands. A combination of a
small number of synergies, leads to a large range of different
possible movements. In humans, such synergies reduce the
dimensionality of the control task and, in turn, reduce the
cognitive effort during learning and execution [2], [3], [4].
Similarly, in robotics, synergies have been shown to improve
grasp planning performance, while at the same time reducing
the computational complexity [5], [6]. However, it is unclear
how to identify and extract such synergies for different robot
types and morphologies. Existing approaches typically rely
on human demonstrations recorded through motion capture
systems. Yet, synergies highly depend on the underlying
kinematics and mechanics of the system and may not be
easily transferred between a human and a robot.

Going beyond uni-manual manipulation, there are also
many tasks that require the coordinated use of multiple limbs.
Research in human motor control has presented evidence for
the existence of bimanual synergies during object manipu-
lation [7]. Different motor synergies may span both arms at
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Fig. 1: A bimanual robot learns to lift an object while simul-
taneously identifying synergies among the control variables.

the same time, or each arm separately. The ability to identify
synergies that affect one or multiple groups of variables
at the same time, would allow robots to efficiently learn
bimanual manipulation tasks, e.g., pouring, turning a valve,
or picking up a box. In this paper, we present a reinforcement
learning method that jointly learns motor synergies, as well
as control policies for bimanual robot manipulation. Based
on our previous discussion of Group Factor Policy Search
(GrouPS) [8], we will show how sample-efficient reinforce-
ment learning can be performed on a physical robot, without
the need for potentially inaccurate simulations. In particular,
we will show how GrouPS can autonomously learn dual-
arm lifting of objects (see Fig. 1), without relying on prior
human demonstrations. The algorithm extracts custom-made
synergies that best fit the current robot and task. This is
achieved through a combination of dimensionality reduction
and policy search. Both, synergies and control policies,
are updated while learning, thus exhausting the information
provided by the sampling set executed in each iteration.
The result is a fast motor skill learning method for tasks
that involve the coordination of multiple limbs. In our
experiments, the robot autonomously learned object lifting
strategies within a relatively small number of trials, i.e., about
1 hour of training time.

The presented method also allows visualizing the extracted
bimanual synergies. Visualizing motor synergies enables



users to better understand the couplings between control vari-
ables. Additionally, extracted synergies typically form basic
movement “building blocks” which can be superimposed to
generate a large variety of different behaviors.

In the remainder of this paper, we will first introduce our
policy search method and subsequently present its applica-
tion to bimanual manipulation tasks.

II. RELATED WORK

Human beings and animals are capable of producing a
wide variety complex behaviors and motions that involve
the coordinated activation of a large number of muscles.
This ability poses the question of whether each muscle, or
degree-of-freedom is independently controlled by the brain
and the central nervous system. Research in neuroscience
indicates that groups of muscles may be organized in a
modular fashion to form muscle synergies. Activating a
synergy will jointly co-activate all involved muscles and
related joints. The result is a significant reduction in the
number of controlled DOFs. In the case of grasping, Santello
et al. [2] showed that ≈ 90% of the variance during human
grasping can be explained using only three synergies. To
this end, human demonstration of grasps were first collected
and, then, processed using Principal Component Analysis
(PCA). Dimensionality reduction techniques, such as PCA,
can uncover the lower-dimensional manifold in which the
recorded data points are embedded. Using a similar strategy,
other researcher teams have found evidence for synergies
in walking [3], running [9], or balancing [4]. Safavynia et
al. [10] showed that the acquisition of new motor skills can
enable the formation of new synergies. Hence, the compo-
sition of synergies is not static but can change as a result
of repeated practice and reinforcement learning. This also
means, that synergies across different subjects may converge
towards the same optimal composition that is induced by the
task constraints. Hug et al. [11] reported evidence for the
formation of similar muscles synergies across expert cyclists
over time.

In robotics, motor synergies such as Eigengrasps [5] are
typically generated by applying PCA on a set of training data.
In the field of grasping and manipulation, this methodology
has found wide spread application such as in [12], [6], [13],
[14] since it significantly reduces the number of control
parameters, while at the same time generating interpretable
principal components. Besides grasping, dimensionality re-
duction was also used to extract synergies for various other
robotics tasks. In [15], linear and non-linear manifold learn-
ing techniques are used to extract postural synergies for
walking and standing-up. The majority of these approaches
relies on a large training set of (approximate) solutions, prior
simulations, or human demonstrations to perform dimension-
ality reduction. Even if such data exists, it may drastically
bias the search by limiting it to the subspace of initially
provided solutions. Especially human demonstrations may
be ill-suited for identifying robot synergies. In [16], an
approach is present in which robot manipulator can learn
synergies from random movements. However, synergies are

often required for a specific task at hand. Hence, methods
are needed that can generate a set of synergies from a task
specification. In [17], we presented a first approach in which
synergies can be learned through reinforcement. However,
the approach did not allow for the specification of groups
of variables within a synergy. In contrast to that, the work
presented in the remainder of this paper allows for users to
identify specific connected groups of variables, e.g., left arm
vs. right arm. Providing this structural information, the algo-
rithm generates synergies that can both model inter-group,
as well as intra-group correlations [8]. This is particularly
useful for tasks that involve multiple limbs. Synergies can
be used to seed the learning algorithm with information
about the structure of the manifold to explore. In the case of
Group Factor Analysis, a first approach for transfer learning
was introduced in [18]. Although, we build upon the same
general idea of reusing previously learned factors, we focus
in this paper on a reinforcement learning setup rather than
a supervised learning setup. Furthermore, we investigate the
use of learned synergies for exploration in similar tasks.

III. EXTRACTING SYNERGIES WITH
POLICY SEARCH

Synergies for robot motions are typically generated
through the application of dimensionality reduction methods
on existing data, e.g., joint angles recorded from a human
subject. Our approach uses Group Factor Analysis (GFA) as
introduced by Klami et al. [19]. However, in contrast to other
work that relies on training data, we derive a reinforcement
learning method that inherently performs factor analysis.
In this section, we will introduce Group Factor Analysis
briefly, describe its properties, and then proceed to show how
Group Factor Analysis and Policy Search can be combined
to yield the Group Factor Policy Search (GrouPS) algorithm.
We close this section with the introduction of a new prior
distribution for the transformation matrix in GrouPS, which
enables the re-use of learned synergies for exploration.

A. Group Factor Analysis for Synergies

Based upon Factor Analysis, GFA assumes that the dimen-
sions of a dataset can be split into groups of variables. The
approach inherently assumes the existence of a strong cor-
relation between variables of the same group, e.g., because
they form a logical unit such as the leg of a robot, a regions
of the brain, or a gene set [19]. The model equation of GFA
for M groups reads

a(m) = W(m)z + µ(m) + ε(m), (1)

where W(m) is the transformation matrix, µ(m) the mean
vector, and isotropic noise ε(m) ∼ N

(
0, τ̃−1

(m)I
)

defined
by the precision τ̃(m). The random vector z ∼ N (0, I) is
the same for all groups while the action a(m) contains the
dimensions of the m-th group. Klami and colleagues intro-
duced prior distributions over the parameters of the model
equation given above. The most important prior distribution



is

p (W|α) =

M∏
m=1

K∏
k=1

Dm∏
d=1

N
(
w

(m)
d,k

∣∣∣0, α−1
m,k

)
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which defines a normal distribution over each entry of the
transformation matrix W, such that the matrix becomes
structurally sparse. The parameter αm,k is specific to each
group m and component k and is given by the log-linear
model logα = UVT+µu1T+1µT

v . The two matrices U ∈
RM×R and V ∈ RK×R are distributed according to a normal
distribution with zero mean and λ precision. The rank factor
R ≤ min(M,K) influences how sensitive the components
are to inter-group correlations. For R = min(M,K) the
log-linear model is equal to a gamma distributed model
assuming independent groups [20]. In order to compute the
parameters of GFA given a data set, Variational Inference is
used while assuming a factorization of parameters according
to p (θ) = q(W)q(τ )q(U)q(V)

∏T
t q(zt) with q being

the approximated distributions. For q(U) and q(V), point
estimators are chosen in order to compute the parameters
with an optimization method such as L-BFGS [21].

Input: Reward function R (·) and initializations of
parameters. Choose number of latent dimension n
and rank r. Set hyper-parameter and define
groupings of actions. Set Ŵ either to a previously
learned synergy or to zero.

while reward not converged do
for h=1:H do # Sample H rollouts

for t=1:T do
at = WiZφ+ Mφ+ Eφ

with Z ∼ N (0, I) and E ∼ N (0, τ̃ ),
where τ̃ (m) = τ̃−1

m I
Execute action at

Observe and store reward R (τ)

Initialization of q-distribution
while not converged do

Update q (M), q (W), q
(
Z̃
)

, q (α) and q (τ̃ )

M = Eq(M) [M]
W = Eq(W) [W] with Eq. (9)
α = Eq(α) [α] with Eq. (11-14)
τ̃ = Eq(τ̃) [τ̃ ]

Result: Linear weights M for the feature vector φ,
representing the final policy. The columns of W
represent the factors of the latent space.

Algorithm 1: Outline of the Group Factor Policy
Search (GrouPS) algorithm. The algorithm is com-
patible to the previous version presented in [8] since
setting Ŵ to zero results in the original update
equations.

B. Group Factor Policy Search

In its traditional form, GFA requires a dataset of examples
in order to extract a low-dimensional manifold. However,
in our case we would like to uncover the low-dimensional
manifold without prior access to any such dataset. Instead,

our goal is to enable a robot to identify synergies for low-
dimensional control using trial-and-error only. To this end,
we derive a reinforcement algorithm that jointly estimates
parameters for dimensionality reduction, as well as a control
policy [8].

In our framework, a trajectory consisting of actions a and
states s is defined by

τ = (s1,a1, . . . , sT ,aT , sT+1) (3)

where T is the number of time steps, and sT+1 is the final
state. The objective of policy search is to maximize the
expected reward over all possible trajectories given by

Ep(τ ) [r = 1] =

∫∫
p(τ , θ)p(r = 1|τ )dθdτ , (4)

where the reward r is defined as a binary variable with
probability p(r = 1|τ ) ∝ exp(−c(τ )) and the cost function
c(·) [22]. The parameters of the policy are defined by θ.
Assuming the Markov property, the probability p(τ , θ) of
the trajectory can be written as

p(τ , θ) = p(θ)p(s1)

T∏
t=1

p(st+1|st,at)π(at|st, θ), (5)

with a prior distribution p(θ) over the parameters θ, state
probabilities p(s1) and p(st+1|st,at) and the stochastic
policy π(at|st, θ).

The model equation for our algorithm Group Factor Policy
Search (GrouPS) reads similar to Group Factor Analysis with

a
(m)
t =

(
W(m)Zt + M(m) + E

(m)
t

)
φ(st, t), (6)

where a
(m)
t ∈ RDm represents the joint or action vector

and φ(st, t) ∈ Rp the feature vector containing the basis
functions in its entries. The actual values of the basis func-
tions depend on the current state or time step. For notational
clarity, we are going to omit states and actions for the
feature vector φ in the remainder of the paper. The matrices
Zt and E

(m)
t are distributed according to matrix-variate

normal distributions: each entry of the latent matrix Zt is
sampled from a standard normal distribution, whereas the
entries of E

(m)
t model the isotropic noise with N

(
0, τ̃−1

m

)
.

The mean policy is given by matrix M(m) ∈ RDm×p

whose parameters, i.e. entries, have to be estimated. The
transformation matrix is given by W(m) and contains the
extracted synergies in its columns. As shown in [17], the
term Ztφ can be rewritten as z̃t = Ztφ ∼ N

(
0,φTφI

)
,

indicating that the noise depends on the values of the basis
functions. In the case of normalized basis functions, i.e.
‖ φ ‖2= 1, this term is distributed according to a standard
normal distribution. Finally, given above distributions, the
stochastic policy π(at|st, θ) (Eq. 5) of Group Factor Analysis
can be found with

M∏
m=1

N
(
a
(m)
t

∣∣∣W(m)z̃t + M(m)φ, (φTφ)τ̃−1
m I

)
. (7)

As stated in [8], Group Factor Policy Search does not
perform Factor Analysis for each group separately. Rather,



Eq. 7 in combination with the prior distribution of W
from Eq. 2 allows us to uncover components, i.e. columns,
in W with a strong correlation among the groups. For
the computation of the parameters we utilize a Variational
Inference approach and determine approximated distributions
given by the factorization q(θ) = q(Z̃)q(W)q(τ̃ )q(M)q(α).
The final update equations of the algorithm (Alg. 1) and more
details regarding Group Factor Policy Search can be found
in [8].

C. Transfer Learning with GrouPS

One possibility to incorporate the idea of transfer learning
into Group Factor Policy Search is to use the latent space
found in one experiment as prior information for a subse-
quent experiment. The prior of the latent space is given by
the normal distribution p(w

(m)
d,k |αm,k) = N (w

(m)
d,k |0, α

−1
m,k).

for each entry w
(m)
d,k of the transformation matrix W =

(W 1T,W 2T, . . .)T. The parameter αm,k is the variance
parameter controlling the inter-group flexibility of each di-
mension, i.e. column of W. We can now incorporate a
previously learned latent space by changing the prior of W
to

p
(
w

(m)
d,k |αm,k

)
= N

(
w

(m)
d,k

∣∣∣ŵ(m)
d,k , α

−1
m,k

)
(8)

with ŵ
(m)
d,k being the entries of Ŵ learned in a previous

experiment. This new prior changes the update equations for
both α and W for the Variational Bayes update. For the
transformation matrix W only the update of the mean [8,
Eq. 21] has to be changed to

µWm,j = ΣW
m ·Ep(τ)

[
p(r = 1|τ)

R̂

T∑
t=1


(
a
(m)
t,j −EM

[
m

(m)
j,:

]
φ
)
Ez̃

[
z̃T
t

]
φTφEτ̃m [τ̃m]−1 − ŵ

(m)
j,: αm,K


(9)

while for the log-linear model of α the derivatives change
(see Appendix). Introducing this new prior offers the pos-
sibility to infuse the algorithm with transformation matrices
from different runs or tasks (Alg. 1). The intuition behind
sparsity for the transformation matrix W is now slightly
different: instead of driving the entries of the transformation
matrix to zero the sparsity prior is trying to maintain the
mean and α controls if deviations are added to one group
or several groups per column of W.

IV. EXPERIMENTS

In order to evaluate the ability of the GrouPS algorithm to
extract meaningful synergies during reinforcement learning,
we performed experiments with bimanual manipulation tasks
on the Baxter robot. In the following experiments, the robot
was tasked to learn how to lift an object with both arms. The
goal is to lift the object as high as possible while retaining
stability. The initial policy consist of a zeroed M-matrix, i.e.,
the robot performs no action.

Validation

Check 

collisions

Repeat Validation

Fig. 2: In each iteration a created sample, i.e. trajectory, is
first simulated and to be accepted by the process (or a human
operator) for execution. Then the trajectory is executed on
the real robot and a reward is generated, which will be used
by GrouPS to compute the updates of the policy parameters.

1) Experimental Setup: Each Object was placed on a table
of height 77cm in front of a Baxter robot with the same
initial position of the arms. Then the GrouPS algorithm was
executed for five latent dimensions and rank three over ten
iterations. In each iteration but the first, ten samples were
newly generated and executed. Each sample constitutes a full
lifting trajectory. The samples were included in a sample set
of size twenty, from which only the ten best samples were
selected for processing while the others were discarded. This
is similar to the importance sampling process used in [8],
[17], [23]. In the very first iteration, twenty samples were
generated. The motivation behind this approach is to allow
failure during learning in the real world and compensate for
any noise in the reward function. The actions at represent
velocities in joint angles of the Baxter robot, thus the
action space has 14 dimensions. The whole learning process
was performed with real executions on the robot only, and
using only rewards generated from the real world (Fig.
2). A kinematic validation process was only used for the
purpose of detecting hazardous trajectories before execution
(Validation). If a trajectory is deemed dangerous, the process
can deny its execution and assign a reward of zero to the
trajectory, thus effectively removing the trajectory from the
set used for the estimation of the parameters.

2) Groups: For the experiments on the Baxter robot, four
groups were chosen in total, two for each arm. The first
group for each arm contains four joints with all rotational
and one twisting joint, while the second group consists of
three twisting joints (see Table I).

3) Used Basis Functions: As basis functions φ, eight
radial basis functions, i.e. Gaussian distributions, with a vari-
ance of three were used. The mean values were equidistant
distributed over the 15 time steps of the trajectory starting
with time step −3 and ending with time step 18.

4) Reward Function: As input for the reward function,
we chose the height of the object in the picture delivered by



(a) The 800x1280 image deliv-
ered by Baxter’s head camera.

(b) The image after using color
and median filtering.

Fig. 3: The current height of an object is approximated by
color filtering.

Fig. 4: The four different objects lifted next to each other
with the ICRA duck as size reference.

the integrated head camera of the Baxter robot. In order to
detect the object during lifting, we used basic color filtering
and reflective green tape on the objects (Fig. 3).

For each time step in the trajectory, we create and process
one image and detect the maximal height of green pixels
in the image. Thus, our reward function does not use the
actual height of the object, but the pixel height h in the
projected 2D image. Since we employed episodic rewards in
our experiments, we used the sum of the exponential cost
function resulting in equation

∑T
t=1 exp(−(1−

ht

800 )) for the
reward. The height ht is here normalized with the image
height of 800 pixel. Due to the angle of the camera, the
reward function is sensitive to horizontal movements of the
objects, thus leading to noticeable noise in the generated
reward values.

5) Objects: Experiments were performed with four differ-
ent objects: An orange ball with diameter 33cm, a yellow ball
with diameter 27cm, a black ball with diameter 22cm, and a
cardboard box with dimensions 26cm×13.5cm×18cm (Fig.
4). While the cardboard box is a rigid object, all balls are
soft, non-rigid and deformable. This property makes them
particularly challenging to handle for the robot. While the
evaluations concentrate on comparisons between the orange
ball and box, final results of the remaining two balls will be
shown to demonstrate the general capability of GrouPS to
solve the task.

6) Time and Sample Size: In all but the first iterations,
ten samples were generated while in the very first iteration
twenty samples were produced. Thus, the total sample size
is 110 samples for one experiment. Each execution of a
sample requires about 25 seconds and one complete iteration
about four minutes. Accordingly, one experiment requires
approximately one hour.

7) Reproducibility: All involved items are internationally
available through the company IKEA®. The cardboard box is
a standard parcel size with dimensions 26cm×13.5cm×18cm
and is used by several international logistics companies. The
Matlab code for this experiment together with a connection
interface to the Baxter robot is available on our website1

including all seeds for the random number generators.
8) Experiments: While not the main scope of this pa-

per, a comparison was performed between GrouPS and the
Policy Learning by Weighting Exploration with the Returns
algorithm (PoWER) [23] on the task of lifting the orange
ball (Fig. 6). PoWER was used in a configuration with a
full covariance matrix over the number of basis functions.
PoWER and GrouPS are naturally two very similar algo-
rithms based on stochastic search. While PoWER makes
use of an Expectation Maximization framework, the GrouPS
algorithm is based on Variational Inference. Also, exploration
in PoWER is solely in the high dimensional space without
exploiting latent structures for directed exploration while
GrouPS incorporates this feature due to its more complex
model. Both algorithms made use of the same number of
samples over ten iterations.

In order to evaluate the introduced modification of ini-
tializing GrouPS with previously learned synergies, three
experiments were conducted: First, GrouPS was initialized
with synergies found while learning to lift the orange ball
(Fig. 9) and then executed four times on the same task.
Then, the same initialization was used to learn to lift the
box with the Baxter robot. Finally, Groups with random
initialization and without pre-initialized mean was applied on
the box lifting task and the learned synergies used to initialize
GrouPS for lifting the orange ball. All above described
experiments were performed four times each.

V. RESULTS

The GrouPS algorithm (without extension) was able to find
trajectories for lifting non-rigid objects of different sizes such
as the orange ball (Fig. 6), as well as for a rigid cardboard
box (Fig. 5). All of the trajectories resulted in a stable final
position holding the object in a higher position (Fig. 8). One
sequence of synergy matrices W is shown in Figure 9, where
the color of the squares indicates whether the values are
negative (gray) or positive (black) and their size correspond
to their absolute value. The depicted transformation matrices
were computed during an experiment aiming to learn how
to lift the orange ball. The extracted synergies can now
be found in the columns of W and replayed directly on
the robot for evaluation. Figure 10 shows two synergies
found by GrouPS during the learning process which encodes
movements for both arms. The first synergy is an opening and
closing movement of both arms, while the second synergy
showcases a movement to up or down. Both synergies can
be combined to generate more complex movements like an
upward, closing movement.

1http://interactive-robotics.engineering.asu.edu/
project/bimanual-synergies/
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Fig. 5: The final sequence of actions for lifting a cardboard box found by GrouPS.

Fig. 6: One final sequence of actions for lifting the orange ball found by GrouPS.

Fig. 7: A comparison between the GrouPS and PoWER
algorithm on a lifting task with the orange ball. The presented
variant of GrouPS using a synergy matrix from the same task
outperforms both GrouPS and PoWER. Each algorithm was
executed four times and the mean and standard variance were
calculated. The vertical axis shows the total cost over 15 time
steps and is based on the height of the ball.

Fig. 7 depicts a comparison of results between GrouPS,
GrouPS using synergies, and PoWER on the task of lifting
the orange ball. While GrouPS outperforms PoWER, pre-
initializing GrouPS with learned synergies from the same
task leads to another increase in performance. The compar-
ison between using synergies learned from different tasks
and GrouPS without modification is presented in Table II
which shows that the differences between both variants are
not significant.

(a) Orange Ball (b) Yellow Ball

(c) Box (d) Black Ball

Fig. 8: The final pose of trajectories for lifting an object.

VI. DISCUSSION

The purpose of the experiments presented above was
to evaluate the ability of the Group Factor Policy Search
algorithm to extract not only a successful policy [8], but
also uncover latent synergies specific to the task and robot
during the learning process. It was found that Group Factor
Policy Search is in fact able to uncover synergies (Fig. 9
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Fig. 9: A sequence of transformation matrices W computed in each iteration t. The transformation matrix contains the
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Fig. 10: Two synergies and their combinations found during
the execution of the GrouPS algorithm for learning to lift
the orange ball. The horizontal axis is showing a synergy
of closing and opening motions whereas the vertical axis
represents a up- and downwards movement of both arms.
Different combinations of those synergies are shown in the
four corners of this figure. The video attachment accompa-
nying this paper shows the full execution of those synergies.

TABLE I: The groups for the joints of the Baxter robot
chosen for the experiments presented in this paper. The joint
names correspond to the technical documentation by Rethink
Robotics

Group Left Arm
1 W1
1 S1
1 E0
1 E1
2 W0
2 S0
2 W2

Group Right Arm
3 W1
3 S1
3 E0
3 E1
4 W0
4 S0
4 W2

TABLE II: Comparison of GrouPS with the proposed mod-
ification for reusing synergies from different tasks. For the
task of lifting the orange ball one set of synergies, the
transformation matrix W, learned in the eight iteration on
the box lifting task were used and vice-versa for the box-
lifting task. The table shows the final mean cost and standard
deviation.

Algorithm Cost (Orange Ball)
GrouPS 9.55± 0.19

GrouPS initialized with Synergies 9.47± 0.22

Algorithm Cost (Box)
GrouPS 9.26± 0.27

GrouPS initialized with Synergies 9.28± 0.25

and Fig. 10) while developing a successful policy for a bi-
manual lifting task. Figure 10 also demonstrates, that these
synergies can be combined in a meaningful way to produce
new or adapted motions which may be used for similar tasks
or initializations of other learning algorithms. Interestingly,
the algorithm uncovers two synergies which resemble the
nature of the task very well (Fig. 10): While different values
of one synergy lead to an opening or closing movement,
the second synergy controls the vertical movement of both
hands.

An analysis of the transformation matrices in Figure 9
shows that weak correlations between groups disappear over
time and strong ones reinforce. However, it can be noted that
the transformation matrix is thinning out towards the end of
the learning process, very likely due to the convergence to an
optimal policy. Thus, it is more likely to find useful synergies
in earlier iterations. The most usable synergies were be found
in iterations seven and eight.

An variant of the GrouPS algorithm was presented which
can make use of uncovered synergies for directed explo-
ration. While it was found that GrouPS initialized with
synergies learned from the same task indeed leads to an
increase in performance (Fig. 7) it is surprising to find that is
not the case when using synergies learned from another task.
This applies for both directions: using synergies from lifting
the orange ball to learn to lift the box, and using synergies
learned from lifting the box to learn to lift the orange ball.



Both objects, box and ball, are naturally different in shape
and so is the optimal strategy for lifting them. Especially the
box posed challenges for the robot, since the endeffectors can
slide easily along the sides of the box. However, the robot
learned to exploit this property over time in order to change
the orientation of the box such that one corner of the box
points upwards.

VII. CONCLUSIONS
In this paper, we presented a methodology and algorithm

for extracting synergies for motor skill learning in robots
and using them to accelerate learning. The approach does
not require any prior data from human demonstrations or
other sources. Instead, we presented a reinforcement learning
method that naturally combines dimensionality reduction
and policy search. We have shown in experiments with
a real-world robot that this combination leads to sample-
efficient reinforcement learning. In addition, we have dis-
cussed how the generated synergies can be visualized in
order to introspect the learning process and better understand
the generated coupling of joints.

The potential for speeding up learning in inter- or intra-
task transfer using synergies was evaluated. It was found
that the presented variant of GrouPS can outperform the
base algorithm when reusing synergies from the same task.
However, using synergies from a different task did not lead to
an increased performance. In future work we will investigate
if this insight applies to the general case of transfer learning
with GrouPS.

APPENDIX
Since the prior distribution of the transformation matrix

W depends on α, the update rule for the log-linear model
has also to be updated. Changing the prior of W leads to
a slightly different log-likelihood for the optimization of the
parameters as stated in [19] with Γ being

Γ = EW

[
(w

(m)
k,: −w

(m)′
k,: )(w

(m)
k,: −w

(m)′
k,: )T

]
. (10)

The final gradients are then given with

∂LU,V(θ)
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)
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∂LU,V (θ)

∂µUm

= DmK

−
K∑
K=1

Γ exp
(
Um,:V

T
k,: + µUm

+ µVk

)
,

(13)

∂LU,V (θ)

∂µVk

= DmM

−
M∑
m=1

Γ exp
(
Um,:V

T
k,: + µUm

+ µVk

)
.

(14)

REFERENCES

[1] N. A. Bernstein, The co-ordination and regulation of movements.
Pergamon Press, 1967.

[2] M. Santello, M. Flanders, and J. Soechting, “Postural hand synergies
for tool use,” The Journal of Neuroscience, vol. 18, no. 23, 1998.

[3] X. Wang, N. O’Dwyer, and M. Halaki, “A review on the coordinative
structure of human walking and the application of principal component
analysis,” Neural Regeneration Research, vol. 8, no. 7, pp. 662–670,
2013.

[4] G. Torres-Oviedo and L. H. Ting, “Subject-specific muscle synergies
in human balance control are consistent across different biomechanical
contexts,” Journal of Neurophysiology, vol. 103, no. 6, pp. 3084–3098,
2010.

[5] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” The International Journal of Robotics Research,
vol. 28, no. 7, pp. 851–867, 2009.

[6] H. Ben Amor, G. Heumer, B. Jung, and A. Vitzthum, “Grasp syn-
thesis from low-dimensional probabilistic grasp models,” Computer
Animation and Virtual Worlds, vol. 19, no. 3-4, pp. 445–454, 2008.

[7] N. Kang and J. H. Cauraugh, “Force control improvements in chronic
stroke: bimanual coordination and motor synergy evidence after cou-
pled bimanual movement training,” Experimental Brain Research, vol.
232, no. 2, pp. 503–513, 2014.

[8] K. S. Luck, J. Pajarinen, E. Berger, V. Kyrki, and H. B. Amor, “Sparse
latent space policy search,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[9] S. Hagio, F. M., and K. M., “Identification of muscle synergies associ-
ated with gait transition in humans,” Frontiers in Human Neuroscience,
vol. 9, no. 48, 2015.

[10] S. A. Safavynia, G. Torres-Oviedo, and L. H. Ting, “Muscle synergies:
implications for clinical evaluation and rehabilitation of movement,”
Topics in spinal cord injury rehabilitation, vol. 17, no. 1, p. 16, 2011.
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